The interval number of a planar graph is at most three
نویسندگان
چکیده
The interval number of a graph G is the minimum k such that one can assign to each vertex union intervals on real line, intersection these sets, i.e., two vertices are adjacent in if and only corresponding sets have non-empty intersection. Scheinerman West (1983) [14] proved any planar at most 3. However original proof has flaw. We give different shorter this result.
منابع مشابه
The competition number of a generalized line graph is at most two
In 1982, Opsut showed that the competition number of a line graph is at most two and gave a necessary and sufficient condition for the competition number of a line graph being one. In this paper, we generalize this result to the competition numbers of generalized line graphs, that is, we show that the competition number of a generalized line graph is at most two, and give necessary conditions a...
متن کاملUniform Number of a Graph
We introduce the notion of uniform number of a graph. The uniform number of a connected graph $G$ is the least cardinality of a nonempty subset $M$ of the vertex set of $G$ for which the function $f_M: M^crightarrow mathcal{P}(X) - {emptyset}$ defined as $f_M(x) = {D(x, y): y in M}$ is a constant function, where $D(x, y)$ is the detour distance between $x$ and $y$ in $G$ and $mathcal{P}(X)$ ...
متن کاملThe convex domination subdivision number of a graph
Let $G=(V,E)$ be a simple graph. A set $Dsubseteq V$ is adominating set of $G$ if every vertex in $Vsetminus D$ has atleast one neighbor in $D$. The distance $d_G(u,v)$ between twovertices $u$ and $v$ is the length of a shortest $(u,v)$-path in$G$. An $(u,v)$-path of length $d_G(u,v)$ is called an$(u,v)$-geodesic. A set $Xsubseteq V$ is convex in $G$ ifvertices from all $(a, b)$-geodesics belon...
متن کاملThe relationship between the distinguishing number and the distinguishing index with detection number of a graph
This article has no abstract.
متن کاملvertex centered crossing number for maximal planar graph
the crossing number of a graph is the minimum number of edge crossings over all possible drawings of in a plane. the crossing number is an important measure of the non-planarity of a graph, with applications in discrete and computational geometry and vlsi circuit design. in this paper we introduce vertex centered crossing number and study the same for maximal planar graph.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Combinatorial Theory, Series B
سال: 2021
ISSN: ['0095-8956', '1096-0902']
DOI: https://doi.org/10.1016/j.jctb.2020.07.006